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Exponentially Long Equilibrium Times in a
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Around 1900, J. H. Jeans suggested that the ``abnormal'' specific heats observed
in diatomic gases, specifically the lack of contribution to the heat capacity from
the internal vibrational degrees of freedom, in apparent violation of the equipar-
tition theorem, might be caused by the large separation between the time scale
for the vibration and the time scale associated with a typical binary collision in
the gas. We consider here a simple 1D model and show how, when these time
scales are well separated, the collisional dynamics is constrained by a many-
particle adiabatic invariant. The effect is that the collisional energy exchanges
betgween the translational and the vibrational degrees of freedom are slowed
down by an exponential factor (as Jeans conjectured). A metastable situation
thus occurs, in which the fast vibrational degrees of freedom effectively do not
contribute to the specific heat. Hence, the observed ``freezing out'' of the vibra-
tional degrees of freedom could in principle be explained in terms of classical
mechanics. We discuss the phenomenon analytically, on the basis of an
approximation introduced by Landau and Teller (1936) for a related pheno-
menon, and estimate the time scale for the evolution to statistical equilibrium.
The theoretical analysis is supported by numerical examples.

KEY WORDS: Collisional equilibrium; kinetic theory; adiabatic invariants;
specific heats; exponential estimates.

1. INTRODUCTION

We consider a classical mechanical model of a one-dimensional gas consist-
ing of n identical diatomic molecules. See Fig. 1. Denoting by x=(x1 ,..., xn)
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and p=( p1 ,..., pn) the canonical variables of the centers of mass of the
molecules, and by !=(!1 ,..., !n), ?=(?1 ,..., ?n) the (Cartesian) canonical
variables describing the internal vibrations, the Hamiltonian has the over-
all form

H(x, p, !, ?)=Htr( p)+Hvib(!, ?)+Vint(x, !) (1)

with

Htr= :
n

i=1 \
p2

i

2m
+U(ri)+ , Hvib= :

n

i=1 \
?2

i

2+
+

+|2!2
i

2 +
and

Vint= :
n&1

i=1

V(ri , !i , !i+1)

where m and + denote respectively the total mass and the reduced mass of
the molecules, while | denotes the frequency of vibration for a single
molecule, and ri=xi+1&xi&l, with l the proper length of the molecule;
the separation between U and V is established by requiring V(r, 0, 0)=0.
Both U and V are assumed to be smooth (in fact analytic, see later) func-
tions and to vanish for r � �. The Hamiltonian Htr describes a gas of
perfectly rigid molecules, with pairwise interaction described by the poten-
tial U ; as is natural, U(r) will be assumed to diverge for r � 0. The gas is
assumed to be diluted, so that Vint is small compared to Htr and Hvib .

A similar model was considered by Jeans(1) in 1903, in the investiga-
tion of the time scale of the approach to equilibrium between translational
and vibrational degrees of freedom in classical gases. The basic idea of
Jeans (after Boltzman, see refs. 3 and 4) is that the energy exchanges
among the translational degrees of freedom, as well as among the vibra-
tional degrees of freedom (exact resonance is here important), are easy, so
that, practically, the two sub-systems described by Htr and by Hvib reach
separately their thermodynamical equilibrium, with temperatures Ttr and
Tvib not necessarily equal; whereas collisional energy exchanges between
Htr and Hvib , in case of large |, are exponentially small, so that an effective
``freezing out'' of the vibrational energy for quite large times (``billions of

Fig. 1. Illustrating the model.
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years,'' in the words by Jeans!) is expected to occur, if | is sufficiently
large.4 The conclusion by Jeans is that, in principle, the experimentally
observed ``freezing'' phenomena of various kind could be explained classi-
cally, without Planck's quantization. More precisely, Jeans focused the
attention on the collision of two molecules, and introduced the drastic
simplification of disregarding one of the internal degrees of freedom; the
resulting Hamiltonian is

H$( p, r, !, ?)=
p2

2m
+U(r)+

?2

2+
+

+|2!2

2
+V(r, !) (2)

and represents the collision of a vibrating molecule with an unstructured
particle (in the frame of the center of mass), or with a fixed wall. Denoting
by 2E the energy exchange between the two degrees of freedom due to a
collision, and by E0 the average of 2E on the asymptotic phase of the
oscillator, Jeans conjectured, and supported heuristically, an exponential
law of the form

E0rE0 e&{0|

where E0 is a typical microscopic energy, while the (crucial) constant {0

represents some time scale associated to the translational motion. Here,
unfortunately, Jeans is not really precise, though he qualitatively identifies
{0 with the typical duration of the collision process. The conclusion is that
in typical conditions E0 is negligibly small, and long-time freezing out
occurs. However, a reasonable quantitative estimate of the time scale for
equilibrium is lacking.

Essentially the same problem of determining 2E in molecular collisons
was independently considered by Landau and Teller(5) in 1936.5 We follow
here ref. 6, where the paper by Landau and Teller was revisited having in
mind applications to Chemical Physics. The Hamiltonian is precisely the
above one (2), with the special choice

U(r)=e&r, V(r, !)=!e&r
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4 This idea was stressed by Jeans in his book on gas theory, (2) but only up to the second
edition (1916), see Chapter XVI. In the next edition (1920) the chapter was removed.

5 The physical motivation by Landau and Teller is different from Jeans' one, namely it con-
cerns the possible dispersion of sound waves in classical gases. But the two problems turn
out to be intimately related. Jeans too, in Chapter XVI of the 1916 edition of his book on
gas theory, applies the calculation to the dispersion of sound, in a manner similar to that
of Landau and Teller.



which allows explicit computations; the method is the so-called ``integra-
tion along unperturbed trajectories,'' namely computation of 2E along
trajectories ( p0(t), r0(t)) of the ``zeroth-order'' Hamiltonian

H( p, r)=
p2

2m
+U(r) (3)

The result was of the form

2E&E0 e&{0|+E1e&{| cos ,, (4)

where , is the asymptotic phase of the oscillator, that is, practically a
random variable in the physical problem. A very important fact is that,
in this approach, {0 and { are precisely identified: indeed, { coincides with
the width of the analyticity strip of r0(t), thought of as a function of com-
plex t, While {0=2{. So, for individual collisions the latter term is much
larger than the former one, but for many collisions it is averaged out statis-
tically.6

The Landau�Teller (LT) approximation, for this and similar problems,
has recently been revisited in the light of modern perturbation theory for
Hamiltonian systems. In special examples(8) it has been (rigorously) shown
to provide the first and dominant contribution in a suitable convergent
series expansion of 2E; in other cases(7, 9, 10) very accurate numerical results
indicated a complete agreement between the theoretical and the
``experimental'' values of 2E (2E ranging over more than twenty orders of
magnitude; more than ninty orders of magnitude in ref. 10). The LT
approximation will be here assumed to be correct, and will be the basic
tool of this paper.

Indeed, the purpose of this paper is to revisit Jeans' program of deducing
theoretically the law of the approach to equilibrium in the above model (1).
To this end, we proceed as follows:

(i) We assume that, at any given moment, the translational and
vibrational degrees of freedom are in equilibrium separately, with canonical
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6 We cannot enter here the details of the LT procedure. But while there are good reasons to
consider the latter term as reliable, the deduction of the former term is open to criticism,
since terms of the same order of magnitude, coming from the next perturbative order, are
disregarded; in particular, as is totally unrealistic, E0 turns out to be always positive (it is
a square). That term is in fact a second-order contribution, improperly taken into account
in the first-order computation. In the quick revisitation of the LT approximation, that we
shall report in the next section, the average of 2E, correctly computed at the lowest order,
will simply vanish.



distributions corresponding to temperatures Ttr and Tvib , not necessarily
equal.

(ii) We assume that the dominant contribution to the energy
exchanges between translational and vibrational degrees of freedom comes
from well separated two-molecules collisions (however, see Section 5 for a
critical discussion of this point);

(iii) We use the LT approximation, suitably adapted to the problem
at hand, to determine 2E in a single binary collision, as a function of the
asymptotic data of velocity and phase of the colliding molecules;

(iv) We then combine together the mechanical model and the
statistical assumptions, and deduce a law of the approach to equilibrium in
the gas, of the form

d
dt

(Tvib&Ttr)= &(Tvib&Ttr) f (|, Ttr) (5)

The (positive) function f depends on the choice of the potentials, and with
reasonable assumptions (including analyticity), it decreases with | as a
stretched exponential. In particular, if U(r) behaves, for small r, as r&s, one
finds

f (|)texp&a|:, where :=
2

3+2�s
(6)

This approach follows rather closely the study reported in refs. 12 and
13 on a related problem, namely the approach to equilibrium in a strongly
magnetized pure electron plasma. In place of the internal vibration of
molecules one has, in the plasma, the Larmor rotation of the electrons
around the magnetic field lines. The essence of the problem, and its mathe-
matical structure, are indeed quite similar. Some work of course is
necessary to adapt the methods to the situation at hand.

In addition to the theoretical work, we also made some numerical
studies, both as a general check of the theoretical results and as a test of
some of the above assumptions. The agreement between theoretical and
numerical results is, as we shall see, quite remarkable.

The next Section 2 is devoted to the mechanical part, that is, to the
above point (iii); some numerical results concerning individual collisions
are also included. The statistical analysis is reported in Section 3. Numerical
results supporting (5) and (6) are reported in Section 4, while Section 5
discusses three body collisions.
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2. REVISITING THE LT APPROXIMATION

In this section we adapt the LT method to our model. The
Hamiltonian we shall start from is the complete Hamiltonian describing
the two molecules collision: in the frame of the center of mass,

H (2)( p, r, ?1 , ?2 , !1 , !2)

=H( p, r)+
?2

1+?2
2

2+
+

+|2

2
(!2

1+!2
2)+V(r, !1 , !2) (7)

with H( p, r) as in (3). Let us remark that the coupling term is small,
namely as small as |&1: indeed, the term itself is O( |!1|+|!2| ), and in turn,
for fixed energy, !1 and !2 are of order |&1.

We now pass to the usual action-angle variables (I, ,) of the oscil-
lators,

?i=- 2Ii| cos ,i , ! i=|&1
- 2Ii| sin ,i , i=1, 2 (8)

which give the Hamiltonian the form

H� (r, p, I1 , I2 , ,1 , ,2)=|(I1+I2)+H(r, p)+V� (r, I1 , I2 , ,1 , ,2) (9)

Because of the exact resonance, it is convenient to introduce the further
canonical change of variables (I1 , I2 , ,1 , ,2) [ (J, 1, �, #) defined by

J=I1+I2 , 1=I2 , �=,1 , #=,2&,1

Notice that the angles now appear as one fast angle, �, and one slow angle, #.
The coupling term now becomes of order |&1

- |J , and for given energy
(given temperature) and large |, it is as small as |&1. As a reminder of this
smallness, we shall write a small parameter = in front of it, and use = as the
small parameter of our perturbative study. The final Hamiltonian, on
which we shall work, is thus of the form

K(r, p, J, 1, �, #)=|J+H(r, p)+= - |J W(r, J, 1, �, #) (10)

with = and | independent parameters; only at the very end will = be
replaced with |&1. (The presence of the factor - |J will be relevant, and
for this reason it has been left in the expression.)

The approximation of ``integrating along unperturbed trajectories,''
applied to the above Hamiltonian, runs as follows:

876 Benettin et al.



(i) One makes a choice of the asymptotic data at t=&�, say

{ p(t) � po

r(t)& pot � ro {J(t) � Jo

�(t)&|t � �o {1(t) � 1 o

#(t) � #o

and uses as the unperturbed trajectory the motion at zero =, namely the
solution p0(t), r0(t) of the Hamiltonian problem H, together with the
trivial motion

J0(t)=J o, 10(t)=1 o, �0(t)=�o+|t, #0(t)=#o

for the internal degrees of freedom. ro, �o and #o are defined up to a con-
stant, corresponding to the choice of the time origin; for definiteness, we
shall take ro=0.

(ii) One assumes that r0(t) is analytic in a complex strip |Jt|<
{={( po). More precisely, one introduces the Fourier components Wk of W,

W(r, J, 1, �, #)= :
k # Z

Wk(r, J, 1, #) eik�

and assumes that all of them are individually analytic as functions of t in
the strip |Jt|<{, if computed along the above unperturbed motion.
Indeed, typically there is a lack of analyticity in all of them, whenever r0(t)
has a singularity.7

(iii) One computes

2J=&= |
�

&�
- |J0(t)

�W
��

(r0(t), J0(t), 10(t), �0(t), #0(t)) dt

As a result, one gets 2J in the form of a Fourier series in the asymptotic
angle �o:

2J== :
k>0

Jk cos(k�o+%k)

with

Jk=- |Jo Ak(Jo, 1 o, #o) e&k|{,

Ak= }k |
�

&�
Wk(r0(t+i{), Jo, 1 o, #o) eik|t dt }

877Exponentially Long Equilibrium Times

7 It might happen that some Fourier components are not affected by the singularity of r0(t),
and are analytic in a larger strip. Such a situation could be easily handled, at the price of
opaque notations; the present assumption is made for simplicity.



One should remark that Ak is not really constant in |, but it depends on
| only weakly, the precise form depending on the analytic properties of the
potential. The dominant dependence of 2J on | resides for each k in the
factor e&k|{.

For large |, the dominant term is the one with k=1, and one has

2J&= - |J o Ae&|{ cos(�o+%), A#A1 , %#%1

At this lowest order in = the average of 2J over the phase �0 vanishes; the
statistical average (2J) over the initial data also vanishes, and this is in
a sense disappointing, since the average energy exchange is the quantity we
are mainly interested in. Nonvanishing contributions are expected from the
next perturbative order. As already remarked, the original computation by
Landau and Teller retains some of them, and these, see (4), are of order
e&2|{; from the analysis of ref. 8 (rigorous, although concerning a specific
model), one understands that at any order in = the contributions to the
average are small (at least) as e&2|{, so in particular they are much smaller
than the first harmonic.8

Second order contributions, including the contributions to the average
which we are interested in, could be produced in principle by iterating the
procedure of integrating along the unperturbed trajectory, see ref. 8 for
details. Such a procedure, however, is rather hard in practice. Fortunately,
this annoying computation is not necessary: as we shall see in Section 3, it
is enough to take for 2J the expression

2J=2$J+2"J (11)

with

2$J== - |Jo Ae&|{ cos(�o+%), 2"J<<2$J (12)

and take into account very general properties of the dynamics (conserva-
tion of volume and time reversal), to compute correctly the dominant con-
tributions to the average (2J) =(2"J) , and find in particular (2J) =
O(e&2|{), even in lack of any detailed informations about 2"J.

Before passing to the statistical part, let us show the results of a
numerical test of the LT approximation. Test and results are similar to
those of ref. 7, but differ from them by the presence of two oscillators
(instead of one) in the Hamiltonian. The coordinates most appropriate for

878 Benettin et al.

8 In fact, in ref. 8 one proves (for a simple model) that at any order in = the k th Fourier
harmonic has in front an exponential factor e&k|{, while the average has in front a factor
e&2|{. It is important that such exponentials are present at each perturbative order,
otherwise higher order could dominate the lower ones, and completely destroy the result.



numerical integration are r, p, ,1 , ,2 , I1 , I2 : indeed (see ref. 11 for a
rigorous proof, and ref. 10 for particularly accurate numerical results), one
can reliably measure extremely small energy exchanges, as is necessary for
a significant check the exponential laws, if: (i) one uses a symplectic
integration scheme; (ii) the algorithm is asymptotically free of errors (save
for round-off ). To comply with the latter requirement, the use of action-
angle variables for the oscillators is mandatory (although apparently
annoying: symplectic algorithms become implicit, and apparently lot of
time is wasted). The symplectic algorithm we used is the simplest possible
one, namely the symplectic transformation generated by

S(r, p$, ,1 , ,2 , I$1 , I$2)=rp$+,1 I$1+,2 I$2+hH(r, p$, ,1 , ,2 , I$1 , I$2)

h denoting the time step. Concerning the potentials entering the model, we
made a simple choice in (7), namely

U+V=
e&\ 2

\
, where \=r&

!1+!2

2
+l

(numerically, there is no need of distinguishing between U and V ), and
then we replaced !1 , !2 by their expressions (8) in terms of the action-angle
variables. The super-exponential decay of the interaction is quite useful to
reduce computation time: practically, the interaction is completely negli-
gible, even in quadruple precision (33 decimal degits), for \�10. Similar
potentials were used in refs. 7, 9 and 10. Our choice of the constants entering
the Hamiltonian is m=1, +=0.5, l=1. We shall not enter here the delicate
question of the reliability of numerical results; for a wide discussion see the
above quoted references, in particular ref. 10.

Practically, in our numerical study we proceed as follows:

(a) We fix initially r=r* with r* large, typically r*=10; we make a
choice of the initial data (essentially coinciding with the asymptotic data)
po, J o, 1 o, #o, �o, with po<0; we then start the numerical integration, and
stop it when r gets again larger than r*. We measure 2E at the end of the
run as the difference between the final and the initial vibrational energy.

(b) In order to separate the Fourier components Ek of 2E, we repeat
each collision with K different values of �o equally spaced in the circle,
namely

�o+
2?j
K

, 0� j<K

879Exponentially Long Equilibrium Times
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The quantities we actually compute are (omitting in 2E all arguments
but �)

E� k= } 1s :
K&1

j=0

2E \�o+
2?j
K + e&ik(�o+ j(2?�K )) } ,

approximating the Fourier amplitudes, with discrete sums in place of
integrals. One immediately recognizes(7, 10) that in our conditions E� k practi-
cally coincides with Ek , as far as K�2k+1 (K�3 for the average). Indeed,
one easily finds

E� k= } :
�

s= &�

E� k+sK } , with E� k+sK=
1

2? |
2?

0
2E(�) e&ik� d�;

but precisely because E� kte&|k| {| (E� 0te&2{| for the average), the term
s=0 dominates the sum, as fast as K�2k+1 (K�3 for the average). So,
in order to compute the harmonics up to k=3, we used in most cases
K=7. Occasionally, as a check, we used higher values of K (with full agree-
ment).

(c) Finally, we repeat the entire procedure for varying | values,
keeping po, J o, 1 o, #o fixed, and plot Ek vs. | in semi-log scale.

According to the above theoretical analysis, we expect to observe (for
large |) streight lines with slope *k proportional to k for k>0, and
*0=*2 . A typical result is shown in Fig. 2. Four lines clearly appear,

Fig. 2. The different exponential laws for the different Fourier components, in agreement
with the Landau�Teller approximation. Initial data: po=&2, Jo=0.088, 1=0.01, �o=0.3,
#=5.454.
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corresponding (right to left) to k=1, 0, 2, 3. The slopes are in the correct
ratio: one finds indeed (least squares fit, excluding a few data for small |)
*0 �*1 and *2 �*1 between 1.9 and 2, *3 �*1 between 2.9 and 3. The experi-
ment was repeated by varying the initial data po, Jo, 1 o, #o with no
qualitative change; as is remarkable, the slopes depend in an essential way
on po, but are practically independent of the other data, and are always in
the correct ratio *0 : *1 : *2 : *3=2 : 1 : 2 : 3. These results make us confi-
dent that the LT approximation describes correctly the energy exchanges of
binary collisions in our model, too.

3. THE STATISTICAL PART

Here we proceed essentially as in refs. 12 and 13; the only difference
is that here we do not use explicitly the ``law of detailed balance,'' as in the
above references, but more elementary facts from dynamics, namely the
time-reversal property and the conservation of volume in the phase space
(which are also at the basis of the law of detailed balance).

It is convenient to eliminate one variable, namely r, by introducing a
Poincare� section r=r*; r* is taken so large that the interaction W is negli-
gible. To proceed statistically, we must count the number dn of pairs of
molecules which cross the section r=r* (with r* <0) in time dt; assuming,
as explained in the Introduction, that the translational and vibrational
degrees of freedom are separately in equilibrium with temperatures Ttr and
Tvib , this number is given by

dn=N&C&1e&;tr Etr ( p)&;vib Evib (J) } p
m } dt dp dJ d1 d� d# (13)

where ;tr=1�(kBTtr), ;vib=1�(kBTvib), while N is the total number of
molecules, & is the density (number of molecules per unit length), and

Etr( p)=
p2

2m
, Evib(J )=|J

the domain of the variables, denoted D, is

p # (&�, 0), J # (0, �), 1 # (&J, J ), �, # # (0, 2?)

finally, the normalization constant is C=CpCJ1C�C# , with

Cp=|
�

0
e&;tr p2�(2m) dp, CJ1=|

�

0
dJ e&;vib|J |

J

&J
d1, C�=C#=2?

881Exponentially Long Equilibrium Times



The quantity we aim to compute is the average energy exchange per unit
time and per molecule, (E4 vib)=|(J4 ); from the expression (13) for dn,
one has clearly

(E4 vib) =
&

mC |
D

| 2J e&;trEtr ( p)&;vibEvib (J ) | p| dp dJ d1 d� d# (14)

with 2J as in (11). Let us introduce the compact notation

x=( p, J, 1, �, #), dx=dp dJ d1 d� d#

Suppose that after the collision, when the distance r between the molecules
reaches again the value r*, the state x has evolved into the state x~ =
( p~ , J� , 1� , �� , #~ ). The preservation of volume in the phase space implies that
the map g~ : x [ x~ has Jacobian | p|�| p~ |. In turn, the time-reversal symmetry
R applied to x~ gives the state x$=( p$, J$, 1 $, �$, #$), with

p$=& p~ <0, J$=J� , 1 $=1� , �$=?&�� , #$=&#~

the overall map g=R b g~ : x [ x$ has obviously Jacobian | p|�| p$|, and
leaves unchanged the integration domain D. We now proceed as follows:
we first rewrite (14) by trivially replacing the dummy integration variable
x by x$; we then make the substitution x$= g(x). The result is

(E4 vib)=
&

mC |
D

p\( g(x)) | 2J( g(x)) dx

where we introduced the short notation \(x)=e&;trEtr ( p)&;vib Evib (J ). Using
now the trivial relation 2J(g(x))=&2J(x), and summing with (14), one gets

(E4 vib) =
&

2mC |
D

p[\(x)&\( g(x))] | 2J(x) dx

We then use Etr( p$)=Etr( p)&| 2J and Evib(J$)=Evib(J )+| 2J; for
small 2$J we have that

\(x)&\( g(x))&|\(x)(;vib&;tr) 2J(x)

and consequently

(E4 vib) =
&

2mC
(;vib&;tr) |

D

| p| \(x)(| 2J(x))2 dx

=
1
2

(;vib&;tr)( (| 2J )2) (15)
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using (11) and (12), and neglecting 2"J compared to 2$J, the result is

(E4 vib)=
&

2mC
(;vib&;tr) |

D

pe&;trEtr ( p)&;vibEvib (J )

_(=| - |J A(x))2 e&2{( p) | cos2(�o+%) dx

We now introduce the further approximation to retain the x-dependence
only where it is really sensitive, that is in Etr( p) and Evib(J ), as well as in
{={( p) and in the factor - |J , and to treat instead as a constant. The
integration in J, 1, # and � is then straightforward, and one finds (also
replacing = by |&1)

(E4 vib)=
&2

2m
Ttr&Tvib

Ttr

1
Cp

|
�

0
pe&;tr ( p2�2m)e&2{( p) | dp (16)

From this expression, using that, in agreement with assumption (i) of
Section 1,

d
dt

Tvib=
2

kB
(E4 vib) ,

d
dt

Ttr=
1

kB
(E4 tr) =&

1
kB

(E4 vib)

one finally gets the differential equation describing the approach to thermal
equilibrium, in the form

d
dt

(Tvib&Ttr)= &(Tvib&Ttr) f (Ttr , |)

f (Ttr , |)=
&

kBTtr

A2

2m
1

Cp
|

�

0
pe;tr ( p2�2m)e&2{( p) | dp

One could work out the same expression using, as in refs. 12 and 13, the
law of detailed balance.

Let us stress that the above procedure is quite general, and holds
for essentially any choice of the potentials U and V entering the initial
Hamiltonian; concerning the unperturbed potential U(r), which plays a
very essential role providing, in particular, the crucial quantity {( p) enter-
ing the exponential law, we only required it is analytic and it describes a
scattering, say it diverges for r&l � 0 and that it vanishes for r � �.

Some remarkable features of the above expression are the following:

v It clearly describes an approach to equilibrium, with (d�dt)(Tvib&Ttr)
proportional to the difference Ttr&Tvib .
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v The expression is complete and explicit but for a multiplicative
constant, if one is able to determine the coefficient {( p). As remarked in
the previous section, this is a zero-order quantity depending only on the
properties of the unperturbed motion r0(t), which can be at least roughly
estimated.

The characteristic time to reach equilibrium

T(;tr , |)t
1

f (Ttr , |)

is certainly a rapidly increasing function of |, as expected by Jeans.
However, as noticed in refs. 12 and 13, T(;tr , |) is not a pure exponen-
tial9 of |. For instance, if for small r

U(r)t
1
rs , s�1

then a rough estimate based on dimensional considerations, see refs. 12 and
13 for details, gives

{( p)t p&(s+2)�s

and correspondingly

Ttexp |2�(3+2�s) (17)

Note how this less than exponential dependence on | arises through the
statistical averaging. The point is that, because of the factor e&{( p)| in the
function to be integrated, the most significant contributions to energy equi-
partition come from collisions involving molecules with a large relative
velocity (large values of p, corresponding to small values of {( p)).
However, because of the Boltzmann distribution, there are very few colli-
sions with large p. As a matter of fact, the compromise between these two
scaling laws results in the above functional dependence on |. Such a
mechanism will be illustrated in detail in the next section, where we report
the results of further numerical computations, and check, in particular, the
exponential law (17).
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4. FURTHER NUMERICAL RESULTS

A direct numerical simulation, like putting n molecules in a box and
looking for the energy exchanges in a long time interval, meets (for
large |) with two essential difficulties:

(i) For large |, only very few collisions with sufficiently large ;tr Etr ,
and correspondingly small probability, do contribute to the energy
exchange; most collisions, namely those with ;tr Etr of order one, do not
produce any appreciable energy exchange, and simulating them is useless.

(ii) In addition, many similar collisions with different asymptotic
phase �o are necessary, if one wants to separate the average (2E) from
the much larger fluctuations. In particular, if the energy exchanges follow
the Landau�Teller law

2E&E0 e&2{( p) |+E1 e&{( p) | cos(�o+%)

and �o is random, then the number of collisions one needs to average out
the second term (for given po, Jo, 1 o, #o) is larger than e{|.

Quite clearly, in such conditions a brute-force calculation, based on the
numerical simulation of the dynamics of a gas with a realistic number of
particles, is hopeless.

An alternative approach is a Monte-Carlo procedure, in which one
simulates numerically a large number of binary collisions, with initial data
chosen partially at random and partially in a systematic way. Let us rewrite
(14) in the form

(E4 vib) =
&

mCp
|

�

0
e&;trEtrF(Etr) dEtr

where

F(Etr)=(2?)&2 C&1
J1 |

D$
e&;vib Evib 2E dJ d1 d� d# (19)

D$ denoting the domain of J, 1, �, #. The idea is to compute (E4 vib) by
regularly scanning the Etr axis (for fixed ;tr , ;vib and |), and to compute
F(Etr) by a Monte-Carlo method. Specifically, we adopted the following
procedure:

(i) For each Etr , we supply a large number M of random initial data
Jo, 1 o, �o, #o, with the appropriate distribution: namely10 Jo with exponen-
tial distribution e&;vib |Jo

, 1 o flat in (0, Jo), and �o, #o flat in (0, 2?).
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(ii) Further, for each value �o, we simultaneously consider (as in
Section 2) K different values of the phase, regularly spaced in the circle,
namely

�o+
2?j
K

, 0� j<K

(iii) For each of these KM initial data we compute 2E (as in Section 2),
and average. As explained in Section 2, K�3 is enough to eliminate the
fluctuations (due to the harmonics k=1 and k=2), and correctly extract
the average. Concerning M, experience shows that for a good statistics,
that is for a reasonable precision, it is sufficient to take M=103 or 2_103.

The result, namely F(Etr) as function of Etr (in semi-log scale, with Etr

in units ;&1
tr ), is shown in Fig. 3, curve (a). In the same figure, the

Boltzmann factor e&;tr Etr is represented by the line (b). The product
F(Etr) e&;trEtr is the curve (c). According to (18), the integral of this last
curve gives (E4 vib).

The results exhibited in Fig. 3 refer to ;tr=4, ;vib=0.6, and a not too
large value of |, namely |=40 (the Hamiltonian is the same as in Section 2).
Curve (c), if represented in a linear vertical scale, gets the shape of a
well defined peak, around the maximum at ;trEtr &14; this peak is
represented in Fig. 4, left curve (left vertical scale). If one increases |, the
peak moves to the right and its value decreases: for example, for |=160,

Fig. 3. Illustrating the numerical computation of (E4 vib). Curves (a)�(c) represent respec-
tively F(Etr), the Boltzmann factor e&;trEtr, and their product (semi-log scale), vs. ;tr Etr . Data:
;tr=4, ;vib=0.6, |=40.
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Fig. 4. The curve (c) of the previous Fig. 3, with vertical linear scale. Same temperatures.
Left (and left scale): |=40; right (and richt scale): |=160.

the peak is around ;tr Etr&26, see the right curve of Fig. 4 (right vertical
scale). As shown by the scales, the equal height of the peaks is a graphic
artifact; their height, and area, are very different. It is perhaps worthwhile
to remark that, already for |=40, practically all contributions to the energy
exchanges come from very few collisions with large Etr (e&14<10&6). For
|=160, the situation is even more dramatic (e&26<10&11).

By varying | at fixed temperatures, one expects to obtain the
(stretched) exponential (6), the coefficient a depending on ;tr but not on
;vib . The result is represented in Fig. 5, where (E4 vib) is reported vs. |2�5

(logarithmic vertical scale), for fixed ;tr=4 and three different values of

Fig. 5. The stretched exponential law (6), for ;tr=4, ;vib=0.2, 0.6, 1 (top to bottom).
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;vib . The straight lines are consistent with the exponential law (6). The
nearly perfect parallelism indicates that the coefficient a is indeed, as
theoretically expected, independent of ;vib .

As a final check of the theory, we considered the dependence of the
rate of the energy exchange (E4 vib) on the temperature Tvib , in order to
verify, see (16), the proportionality to Ttr&Tvib . As a matter of fact,
working numerically at low Tvib is painful, since at low Evib one encounters
the singularities (with corresponding numerical instabilities) associated
with the square roots of the small actions. We found a practical limit for
accurate results at Tvib=0.5 (units such that kB=1). Figure 6 reports
(E4 vib) vs. Ttr&Tvib , at fixed Tvib=0.25 (i.e., ;vib=4, as before), for three
different values of |. Although the curves show a rough proportionality to
Ttr&Tvib for small Ttr&Tvib , for larger Tvib one finds significant deviations
from linearity. We did not investigate this lack of linearity (but it is not
really surprising that linearity is lost, if one is too far from equilibrium). In
our opinion, the most remarkable feature of Fig. 6, and perhaps of this
entire paper, is that all curves tend to zero when the temperature difference
vanishes. Although physically not surprising, this is not at all trivial. Indeed
we assumed separate equilibria for the two subsystems, but then we let the
microscopic dynamics evolve, obeying Hamilton's equations: it is a fact
that the energy exchanges produced by the microscopic laws of motion,

Fig. 6. The dependence of the rate of the energy exchange vs. Tvib&Ttr , at fixed Ttr , for
three different values of |.
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weighted with the equilibrium statistics, do produce the correct non equi-
librium behavior, namely relaxation towards thermal equilibrium. The
theoretical mechanism, actually a very robust one, resides in Eq. (15),
together with the fact that the average is much smaller than the fluctua-
tions; all other details are irrelevant.

5. THREE-MOLECULE COLLISIONS

As mentioned in Section 1, the theoretical development is based
among other things on the assumption that the dominant mechanism in
the equilibration is well separated binary collisions between molecules. If
the gas is sufficiently dilute, there are statistically more binary collisions
than there are close collisions involving three or more particles. The
average ratio of two-molecule collisions to three-molecule collisions
depends on the density and on the longitudinal velocity distribution, but
does not depend on any part of the vibrational dynamics, and in particular
it does not depend on | at all.

One might therefore worry, since we are collecting exponentially small
quantities, that the contribution to equilibration from the few, but not
exponentially few, three-molecule collisions could amount to the same
order of magnitude, or even dominate, the contribution from the binary
collisions.

A theoretical estimate of the energy resulting from a three-molecule
collision is, even in our simplified model of the 1-D gas, a serious challenge.
A numerical investigation is called for to throw some light on the issue.

As Hamiltonian, we took the Hamiltonian (1) with N=3. In terms of
individual molecule action-angle coordinates (see Eq. (8)),

H( p, x, ?, !, ,)=
p2

2

4m
+

p2
2

4m
+

p2
3

4m
+|(I1+I2+I3)+V( y12)+V( y13)+( y23)

where yij=xj&xi&|&1�2(- Ij sin ,j&- Ii sin , i )&l and V( y)=e&y2�y.
Choosing initial conditions, one can carefully arrange a close three-

molecule collision. Figure 7 shows a typical evolution with time of both
the individual vibrational actions, Ii , and the total vibrational action,
I1+I2+I3 .

Because of the exact resonance, only the sum of the actions remains a
true adiabatic invariant, returning to (exponentially near) its initial value
when the molecules separate after the collision. Each individual vibrational
action has changed notably from initial value, but they have ``conspired'' to
keep the sum (near) constant. And it is whether the change in this sum is
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Fig. 7. The time evolution, normalised to pre-collision value, of the individual actions, and
of the sum of the actions, for a close three-molecule collision.

of different magnitude when three molecules are involved, rather than two,
that we wish to investigate.

We therefore arranged a family of initial conditions, depending on a
parameter $. The parameter $ being zero implies an evolution that has first
molecule 1 collide with molecule 2, and then later molecule 2 collide with

Fig. 8. Energy exchange over a range of initial conditions, resulting in pairs of well-
separated binary collisions ($r0 and 10), and collisions involving all three particles ($r5).
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molecule 3. In the middle range of $r5, all three molecules are brought to
interact simultaneously, and then scatter, as the experiment of Fig. 7.

A typical scan across ``degree of three-molecule involvment'' is
illustrated in Fig. 8, for moderate | values between 10 and 25.

The phase-averaged energy exchange, as a function of $ is plotted. One
can see that, at least for the | values examined, the close three-body colli-
sion ($r5) results in no dramatic change in the order-of-magnitude for the
energy exchange; in fact, a small decrease is observed. Other values of |
and other sets of initial conditions gave the same quantitative picture.

Although not a proof, we find this numerical evidence regarding three-
molecule collisions reassuring, and consistent with the (independent) agree-
ment between on one hand the Monte-Carlo simulation of the previous
section, and on the other hand the theoretical prediction of Sections 2
and 3.
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